翻訳と辞書
Words near each other
・ Admirał floty
・ Admire Formation
・ Admire Group
・ Admire Moon
・ Admire Rakti
・ Admire, Kansas
・ Admire, Pennsylvania
・ Admirável Chip Novo
・ Admirável Mundo Novo
・ Admissibility
・ Admissible algebra
・ Admissible decision rule
・ Admissible evidence
・ Admissible heuristic
・ Admissible numbering
Admissible ordinal
・ Admissible representation
・ Admissible rule
・ Admissible set
・ Admissible trading strategy
・ Admission
・ Admission (film)
・ Admission (law)
・ Admission by Guts
・ Admission control
・ Admission Day Monument
・ Admission Free
・ Admission note
・ Admission on motion
・ Admission to practice law


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Admissible ordinal : ウィキペディア英語版
Admissible ordinal
In set theory, an ordinal number α is an admissible ordinal if Lα is an admissible set (that is, a transitive model of Kripke–Platek set theory); in other words, α is admissible when α is a limit ordinal and Lα⊧Σ0-collection.〔. See in particular (p. 265 ).〕〔.〕
The first two admissible ordinals are ω and \omega_1^} for the \alpha-th ordinal which is either admissible or a limit of admissibles; an ordinal which is both is called ''recursively inaccessible''.〔. See in particular (p. 560 ).〕 There exists a theory of large ordinals in this manner that is highly parallel to that of (small) large cardinals (one can define recursively Mahlo cardinals, for example).〔.〕 But all these ordinals are still countable. Therefore, admissible ordinals seem to be the recursive analogue of regular cardinal numbers.
Notice that α is an admissible ordinal if and only if α is a limit ordinal and there does not exist a γ<α for which there is a Σ1(Lα) mapping from γ onto α. If M is a standard model of KP, then the set of ordinals in M is an admissible ordinal.
==See also==

*Large countable ordinals
*Inaccessible cardinal
*Constructible universe

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Admissible ordinal」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.